An '''antioxidant''' is a molecule that inhibits the oxidation of other molecules. Oxidation is a chemical reaction that can produce free radicals, leading to chain reactions that may damage cells. Antioxidants such as thiols or ascorbic acid (vitamin C) terminate these chain reactions. The term "antioxidant" is mainly used for two different groups of substances: industrial chemicals which are added to products to prevent oxidation, and natural chemicals found in foods and body tissue which are said to have beneficial health effects.
To balance the oxidative state, plants and animals maintain complex systems of overlapping antioxidants, such as glutathione and enzymes (e.g., catalase and superoxide dismutase) produced internally or the dietary antioxidants, [[vitamin A]], [[vitamin C ]] and vitamin E.
Antioxidant dietary supplements do not improve health nor are they effective in preventing diseases[citation needed]. Randomized clinical trials including supplements of beta-carotene, vitamin A and vitamin E singly or in different combinations found no effect on mortality rate and cancer risk, or may even increase cancer risk. Supplementation with selenium or vitamin E does not reduce the risk of cardiovascular disease. Oxidative stress can be considered as either a cause or consequence of some diseases, an area of research stimulating drug development for antioxidant compounds for use as potential therapies.
'''Relation to diet'''
Although certain levels of antioxidant vitamins in the diet are required for good health, there is considerable debate on whether antioxidant-rich foods or supplements have anti-disease activity. Moreover, if they are actually beneficial, it is unknown which antioxidant(s) are needed from the diet and in what amounts beyond typical dietary intake. Some authors dispute the hypothesis that antioxidant vitamins could prevent chronic diseases,[8][11] while others maintain such a possibility is unproved and misguided from the beginning.
Polyphenols, which often have antioxidant properties in vitro, are not necessarily antioxidants in vivo due to extensive metabolism. In many polyphenols, the catechol group acts as electron acceptor and is therefore responsible for the antioxidant activity. However, this catechol group undergoes extensive metabolism upon uptake in the human body, for example by catechol-O-methyl transferase, and is therefore no longer able to act as electron acceptor. Many polyphenols may have non-antioxidant roles in minute concentrations that affect cell-to-cell signaling, receptor sensitivity, inflammatory enzyme activity or gene regulation.