Note: This is a project under development. The articles on this wiki are just being initiated and broadly incomplete. You can Help creating new pages.
Sexual differentiation in humans
Sexual differentiation in humans is the process of development of sex differences in humans. It is defined as the development of phenotypic structures consequent to the action of hormones produced following gonadal determination. Sexual differentiation includes development of different genitalia and the internal genital tracts, breasts, body hair, and plays a role in gender identification.
The development of sexual differences begins with the XY sex-determination system that is present in humans, and complex mechanisms are responsible for the development of the phenotypic differences between male and female humans from an undifferentiated zygote. Females have two X chromosomes, and males have a Y chromosome and an X chromosome. At an early stage in embryonic development, both sexes possess equivalent internal structures. These are the mesonephric ducts and paramesonephric ducts. The presence of the SRY gene on the Y chromosome causes the development of the testes in males, and the subsequent release of hormones which cause the paramesonephric ducts to regress. In females, the mesonephric ducts regress.
Divergent sexual development, also known as intersexuality, can be a result of genetic and hormonal factors.
Sex determination
A baby’s genetic sex is determined at the time of conception. When the baby is conceived, a chromosome from the sperm cell, either X or Y, fuses with the X chromosome in the egg cell, determining whether the baby will be genetically female (XX) or male (XY). To be genetically female, one needs to be (XX), whereas to be a genetic male, (XY) is needed. It is the Y chromosome that is essential for the development of the male reproductive organs, and with no Y chromosome, an embryo will develop into a female. This is because of the presence of the sex determining region of the Y chromosome, also known as the SRY gene.
A fetus doesn't develop its external sexual organs until the second month of pregnancy—seven weeks after conception. The fetus appears to be sexually indifferent, looking neither like a male or a female. Over the next five weeks, the fetus begins producing hormones that cause its sex organs to grow into either male or female organs. This process is called sexual differentiation. The precursor of the internal female sex organs is called the Müllerian system.
Psychological and behavioral differentiation
Human adults and children show many psychological and behavioral sex differences, both dichotomous and dimorphic. Some (e.g., dress) are learned and obviously cultural. Others are demonstrable across cultures and have both biological and learned determinants. For example, some studies claim girls are, on average, more verbally fluent than boys, but boys are, on average, better at spatial calculation. Because people cannot explore hormonal influences on human behavior experimentally, the relative contributions of biological factors and learning to human psychological and behavioral sex differences (especially gender identity, role, and sexual orientation) are controversial (and hotly contested).
Current theories of mechanisms of sexual differentiation of brain and behaviors in humans are based primarily on three sources of evidence: animal research involving manipulation of hormones in early life, observation of outcomes of small numbers of individuals with disorders of sexual development (intersex conditions or cases of early sex reassignment), and statistical distribution of traits in populations (e.g., rates of homosexuality in twins). Many of these cases suggest some genetic or hormonal effect on sex differentiation of behavior and mental traits.
Biology of gender
Biology of gender is the scientific analysis of the physical basis for behavioral differences between genders. It deals with gender identity, gender roles and sexual orientation.